High Pressure Freezing of Macromolecular Crystals.

Anja Burkhardt, Martin Warmer, Saravanan Panneerselvam, Armin Wagner, Rudolph Reimer, Heinrich Hohenberg, and Alke Meents

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg

Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg

High pressure freezing allows sample vitrification without penetrative cryoprotectants. Macromolecular crystals are frozen directly in their mother liquor at 77 K and 210 MPa. The method is ideally suited for cryocooling large unit cell systems, such as virus crystals or membrane proteins, which are very difficult to cryoprotect.

Motivation

Macromolecular crystals contain between 20 and 80% solvent (mainly water). Successful cryocooling of such crystals requires the use of cryoprotectants in order to suppress hexagonal ice formation and to convert the water to amorphous ice (vitrification). Finding optimal cryoconditions can be very time-consuming and the data quality is often degraded upon cryoprotection. High pressure freezing (HPF) allows sample vitrification without any cryoprotectants. It was our goal to develop a HPF protocol which is generally applicable to all types of macromolecular crystals including complex systems with large unit cells and/or high solvent content which represent very challenging targets for cryoprotection.

Experimental Setup

Crystallization

- Directly in quartz capillaries (by counter diffusion) or micro cellulose tubes (via dialysis)
- By vapour diffusion; subsequently, crystals are drawn in quartz capillaries

High Pressure Freezing

- Samples are high pressure frozen at 77 K and 210 MPa.
- Baltec HPM 010 high pressure freezer is commercially available and allows fast sample cooling with ~7000 K/s at the sample surface.
- Macromolecular crystals are directly cryocooled in their mother liquor.
- Sample manipulation after HPF is performed below 135 K to prevent hexagonal ice formation.

Results and Discussion

Bovine Enterovirus 2 (BEV2)

- Space group: P2₁3
- V = 8.10 × 10⁵ Å³
- Solvent content: ~60%
- Mosaic spread: 0.26°

Photosystem II (PSII)

- Space group: P2₁2₁2₁
- V = 9.24 × 10⁶ Å³
- Solvent content: ~64%
- Mosaic spread: 0.22°

Acknowledgment

E. E. Fry, J. Ren, and D. I. Stuart are gratefully acknowledged for BEV2 data processing and structure refinement and M. Bommer, J. Hellmich, C. Glickner, M. Ibrahim, and A. Zouni for providing PSII crystals and analysis of the PBE data. We would like to thank the beamline staff at I04-1 and I24 at Diamond Light Source and the MX group at Swiss Light Source for technical support during beamtimes. M. Holthaus is gratefully acknowledged for preparing illustrations of the HPF setup.