

1.6 Å Structure of Pil_{Bac1}: Insights into Long-Range Electron Transfer in Bacteria and a Sulfur-SAD Success Story

<u>Manuela Gorgel^{1,2}</u>, Andreas Boeggild¹, Jakob J. Ulstrup¹, Manfred S. Weiss³, Uwe Mueller³, Poul Nissen¹ and Thomas Boesen¹.

¹: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark.

²: Current address: Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany. ³: Helmholtz Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.

E-mail: gorgel@genzentrum.lmu.de Keywords: **S-SAD**, anomalous phasing; Nanowires, Shewanella,

Introduction: Bacterial nanowires are natural cables

- The metal-reducing bacteria Shewanella oneidensis and Geobacter sulfurreducens can use metals like Fe(III), Mn(IV) and U(IV) as electron acceptors: They literally breathe metals. BUT: most metals are only poorly soluble (Fe(III), Mn(IV)) and often highly toxic $(U(IV), {}^{99}Te(VII), Hg(II)) \longrightarrow they cannot enter the cell!$
- The bacteria need to transfer the electrons from the inside of the cell to the metals at the outside. For this, they produce nanowires^{1,2} (Fig. 1)! These are long, extracellular filaments that act like natural cables!
- Data from Geobacter show that type IV pili, which are commonly expressed in many diverse bacteria, are part of nanowires^{2,3}.

Figure 1: Nanowires. A: TEM image of G. sulfurreducens nanowires². Arrows indicate pili.

<u>QUESTION</u>: How Can Type IV Pili Form Nanowires in *Shewanella Oneidensis*?

B: AFM image of *S*. *oneidensis* nanowires¹.

Electron transfer theories

Basis: Type IV pili form nanowires!

A: <u>Metallic-like theory^{4,5}</u>: Aromatic residues in a type IV pilus are so closely positioned to each other, that the electrons can be delocalized and transferred like in a metal lattice (Fig. 2A).

B: <u>Multi-step hopping theory</u>⁶: Type IV pili form a non-conductive backbone to which multi-heme cytochromes attach. Electrons can then hop from one heme to the other along the full nanowire (Fig. 2B).

Figure 2: A: Metallic-like theory. B: Multi-step hopping theory.

Structure of Pil_{Bac1}

Sequence analysis and MS data indicate that the type IV

Sulfur-SAD Phasing

Data collection and processing

- 3 data sets of 360° on 3 different volumes of 1 single crystal
- At a wavelength of 1.8 Å
- Very low Bijvoet ratio ΔF/F: 0.9%
- Very low **Multiplicity**: 5.5
- \rightarrow Not very promising so far

Figure 5: Data collection on

1: 360°

2: 360°

3: 360°

crystal.

- 6 Sites found by Autosol⁸
- 2 Cysteine bridges (Fig. 6A,B)
- $1 SO_4^{2-}$ ion (Fig. 6C)
- and a metal ion (Fig. 6D).

Table 1: Data processing statistics:
 3 data sets were processed with XDS⁷ and merged (1-3). Data sets were successful that are highlighted in green.

A second second		1	2	3	1-3 (merged)
	Multiplicity	6.1 (4.8)	6.1 (4.9)	5.5 (4.3)	17.5 (13.9)
	Completeness (%)	96.0 (93.4)	96.8 (94.6)	96.3 (94.6)	97.1 (94.9)
	R _{merge} (%)	3.3 (8.1)	3.4 (8.6)	3.0 (7.4)	3.7 (8.8)
	R _{r.i.m.} (%)	3.6 (9.1)	3.7 (9.6)	3.3 (8.5)	3.8 (9.2)
	Wilson B-factor	28.6	27.8	28.0	27.8
à	Mean I/σI	34.1 (13.5)	33.1 (12.9)	34.6 (13.2)	51.7 (21.2)
1	CC½	0.99 (0.99)	0.99 (0.99)	0.99 (0.99)	1.0 (0.99)
ALL THE ALL THE ALL AND AL					

pilus (T4P) protein Pil_{Bac1} is a **putative nanowire** subunit.

- We determined its **1.6 Å structure** (Fig. 3A) by S-SAD (see right): \rightarrow common T4P fold. <u>BUT</u>: straight α -helix. unusual position of disulfide bridge.
- Model of a complete Pil_{Bac1} pilus (Fig. 4) - based on T4P from *N. gonorrhoeae* (PDB: 2HIL). - NT α -helix buried in the core with β -sheet to the outside.
- Distribution of aromatic residues (Fig. 3B,C)
- → Indeed clusters of **closely spaced aromatic side chains**!
- → BUT THESE CLUSTERS ARE TOO FAR FROM EACH OTHER (11 Å !) THAT ELECTRONS COULD MOVE BETWEEN THEM!

a pilus from N. gonorrhoeae (PDB:2HIL).

Aromatic residues are shown in spheres.

Density modification

- Large solvent channels (Fig. 7)
- Only 2 mol/ASU, against Matthew's coefficient analysis!

Figure 6: Sites found by Autosol. 2F_o- F_c map at 1.5 σ .

Figure 7: Overall electron density map. A: Before, B: After density modification for 1-3 at 1.5σ .

Figure 8: Density modified map residues 76-87 comprising (HKGVRVPATCNWV) at 1.5σ.

Model building by Autobuild⁹

>90% built (Fig. 8).

Validation Anomalous difference maps

- Sites 1,2 and 3,4: Cys bridges (Fig. 9A,B).
- Site 5: SO_4^{2-} (Fig. 9C)
- Site 6: **Na⁺ ion**! Despite low anomalous signal at 1.8 Å (Fig. 9D)!

Isomorphous difference maps

Figure 3: **A**: Structure of Pil_{Bac1}. The straight helix and the SS-bridge are highlighted in red. B: Pilus model of Pil_{Bac1}. The aromatics are shown as spheres. C: Zoomed in view on the aromatics in the pilus and the distances between them.

Conclusion/Outlook

- In fact, clusters of closely spaced aromatic residues can be found in a Pil_{Bac1} pilus model, but these will be too far away from each other to allow for electron flow along the pilus. Therefore, the **Pil_{Bac1} pilus will not be conductive on its own** – additional factors like cytochromes will be necessary. This is in favor with the multi-step hopping theory!
- Currently, EM studies on nanowires are ongoing for further reconstitution. Here, we see nanowires covered with protein complexes, probably cytochromes.

Strong radiation damage at Cys bridges; after 180°: already oxidized (Fig. 10)!

S-SAD CONCLUSION

- The predicted limitations of S-SAD (low anom. signal, low multiplicity) were challenged.
- A well-diffracting crystal lead to excellent phases and defined maps in which even a sodium ion could be identified!

An overview over 100 S-SAD statistics is given in detail in ¹⁰. Figure 9: Anomalous difference map at 4σ. A: Overall molecule. B, C: Cys bridges. **D**: Sulfate ion. **E**: Na⁺ ion.

Figure 10: Isomorphous difference map between the first and second 180° of data set 3 around the Cys bridges at 4 σ .

References: 1: Gorby et al. (2006). PNAS. 103(30), 11358–33. 2: Reguera et al (2005). Nature 435 (7045), 1098-01. 3: Reguera et al (2006). Applied and Environmental Microbiology 72(11), 7345–48. 4: Bond et al (2012). Chemsuschem. 5(6), 1099-05. 5: Strycharz-Glaven et al (2011). En. And Environ. Sci. 4(11), 4366-79. 6: Malvankar et al (2011). Nature Nanotech. 6(9), 573-9. 7: Kabsch (2010). Acta cryst D. 66, 125-32. 8: Terwilliger et al (2009). Acta Cryst. D 65, 582-01. 9: Terwilliger et al (2008). Acta Cryst. D. 64, 61-9. 10: Gorgel et al. (2015). Acta Cryst. D. 24 (71), 1095-01.

