Synthesis and characterisation of various monazite solid solution series

Antje Hirsch1, Philip Kegler2, Igor Alencar3, Javier Ruiz-Fuentes3, Anja Thust4, Johannes Bauer3, Charlotte Schauenstein4, Lars Peters1, Georg Roth1

Why monazite?

Monazite type ceramics are considered as potential storage materials for minor actinides from high-level nuclear waste. Natural analogues can form solid solutions incorporating up to 30 w% ThO2 and UO2.

Properties of monazite

- Long term stability
- Chemical durability
- Structural flexibility
- High waste loading
- Low critical temperature of amorphisation

Structure

Powders synthesised via solid state reaction with NH4H2PO4 excess [1]

Micro-sized crystallite aggregates are highly porous and homogeneous (BSE)

Lattice parameters from RT-XRD for six solid solutions showing almost ideal behaviour

Single crystals obtained by flux growth routine using MoO3 and Li2CO3 [2]

Single crystals of (La,Pr)PO4 show no sign of zonal growth in EPMA

LaPO4 phase transformation at 27GPa from monazite (P 2n/n) to post-barite structure (P2221) [5]

Thermodynamics of (La,Pr)PO4

HT drop solution calorimetry on powders indicating a high sensitivity to impurities and an almost ideal solid solution [11]

LT microcalorimetry on single crystals revealing a Schottky-contribution resulting from forbstal electrons [12]

Microstructure

Ceramics produced via cold-isostatic pressing and sintering in two steps (1273 K; 1673 K)

SEM images of pre- (a) and final ceramics (b) show increasing theoretical density from 64 % up to 99.3 %

Average grain size of (La,Pr)PO4 ceramics via intercept method [6] showing a higher grain growth of intermediate compositions

Thermochemical Biharmonic Equations

\[\Delta H_{\text{fus}} = x \Delta H_{\text{fus},0} + (1-x) \Delta H_{\text{fus},1} \]

\[C_p = x \rho RT + (1-x) \rho_1 RT_1 \]

\[\rho = x \rho_0 + (1-x) \rho_1 \]

References

[8] Hikichi et al., 1997, MINERALS, 19, 123-130

Acknowledgement

Thanks to Alexandra Naumskaya and Anna Shegog for the help on HT drop solution calorimetry and the discussions, Nadine Rademacher for the SEM measurements, Eileen Hausschild for discussions of dilatometry data, Lea Lein and Petra Schott for performing the HT-XRD measurements, as well as Barbara Meder and Peter Appel for EPMA measurements. Many thanks to Chris Cladis, Andrea Schumacher, Noel Ladenthin, David Bigdeli and Zafar Kuceli for synthesising and analysing your own solid solutions during your time as student assistant, Bachelor and Master thesis, respectively. Special thanks to Bernd Liebich and Katja Martens for motivation and encouragement and to the whole IK for support. Funding was gratefully given by the BMWF (02NUK21D, 02NUK21E, 02NUK21F).

Institutional Affiliations

1RWTH Aachen University, Institute of Crystallography; 2Institute of Energy and Climate Research (IEK5), Forschungszentrum Jülich; 3Goethe University Frankfurt am Main, Department of Geoscience; 4RWTH Aachen University, Institute of Mineral Engineering.

SPONSORED BY THE