Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices

<u>Matthias Künzle¹</u>, Marcel Lach¹, Thomas Eckert², and Tobias Beck^{*,1}

¹Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany ²Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany

General strategy

- protein containers as templates for the organization of nanoparticles
- generate binary structures with crystalline order
- future application in catalysis, sensing, optoelectronics

I. Surface engineering

II. Nanoparticle synthesis III. Binary crystal assembly

Surface engineering of human ferritin

- in silico protein design with the Rosetta fixbb module
- overexpression in *E. coli*
- elaborate purification protocol

Characterization:

- mass spectrometry
- SDS/native PAGE
- circular dichroism spectroscopy
- TEM/DLS

elution volume (mL)

Ftn^(neg)

4 mutations

per subunit

- **Crystallization trials and structure determination**
- protein crystallization screening with **empty** ferritin
- crystal optimization in manual plate setup

Single crystal X-ray diffraction

Lattice parameters controlled by crystallization conditions

Tetragonal binary protein structure CN: 12 additional contacts between like-charged

containers

cell parameters: *a* = 126.6 Å, *c* = 174.9 Å

Same space group, different coordination

only contacts between oppositely-charged containers

In situ nanoparticle synthesis

CeO₂ nanoparticles in Ftn^(pos)

metal precursor oxidant TEM

Protein shell size | NP core size $12.2 \pm 0.7 \text{ nm}$ 5.8 ± 0.9 nm

 Co_3O_4 nanoparticles in Ftn^(neg)

Conclusion

In summary, we produced binary superlattices of inorganic nanoparticles by exploiting electrostatic

empty

 Co_3O_4

cell parameters: *a* = 153.3 Å, *c* = 135.8 Å

- CN: 8

Protein-nanoparticle assembly and characterization

Small-angle X-ray scattering (SAXS)

Binary nanoparticle lattice

simulated diffraction pattern

interactions between engineered protein containers. Importantly, the protein shell determines the structure of the assembly whereas functionality can be readily imparted by the choice of cargo, e.g., nanoparticles, enzymes, small molecules, or a combination of these. By varying the lattice parameters with different crystallization conditions, multifunctional biohybrid materials with tunable structures could be accessible.

Large domain sizes, crystal structure independent from nanoparticle cargo

References

- Künzle, M., Eckert, T. & Beck, T.: 'Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices' J. Am. Chem. Soc. 2016, 138, 12731-12734.
- Beck, T., Tetter, S., Künzle, M. & Hilvert, D.: 'Construction of Matryoshka-Type Structures' from Supercharged Protein Nanocages' Angew. Chem. Int. Ed. 2015, 54, 937-940. *tobias.beck@ac.rwth-aachen.de

Acknowledgments

- Prof. Ulrich Simon
- Prof. Ulrich Schwaneberg
- Prof. Walter Richtering
- Prof. Jörg Fitter / PD Dr. Oliver Weiergräber

Excellence Initiative of the German federal and state governments