

Frederike Lehmann^{1,2}, Marie Cherasse³, Silvia Binet⁴, Alexandra Franz¹,

Susan Schorr^{1,5}

¹Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

²Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, 14476 Potsdam OT Golm, Germany

³University of Paris-Sud, 5 rue Georges Clemenceau, 91400 Orsay, France

α-FAPbl₃:

⁴Ecole Polytechnique Federal de Lausanne, Rue Cantonale, 1015 Lausanne, Switzerland

⁵Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstr. 74-100, 12249 Berlin, Germany

Stabilizing the cubic phase of the triple cation hybrid perovskite $(FA_{1-x}MA_x)_{1-y}Cs_yPbl_3$ solid solution

At present, the rapidly rising solar conversion efficiencies are standard for solar cells with hybrid perovskite absorber layers, for which methylammonium lead triiodide (MAPbl₃) and formamidinium lead triiodide (FAPbl₃) are promising candidates.^[1] Nevertheless, further optimization is necessary because the long term stability of these perovskites is a crucial problem. Unfortunately, the desired cubic modification of FAPbl₃ is unstable and transforms to a non-perovskite hexagonal room temperature modification^[2], which is not suitable as absorber layer in solar cells. Our approach is to stabilize the favorable high temperature cubic perovskite modification at room temperature by partially substituting FA by MA or Cs and systematically study the $(FA_{1-x}MA_x)_{1-y}Cs_yPbI_3$ solid solution with regard to miscibility and phase stability.

Crystallographic information

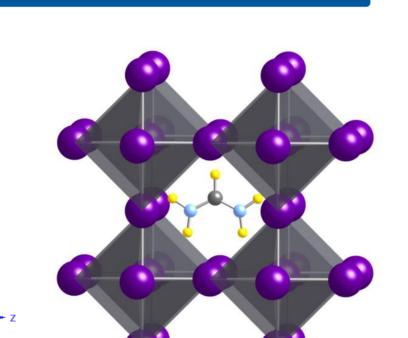
FAPbl₃ [3]

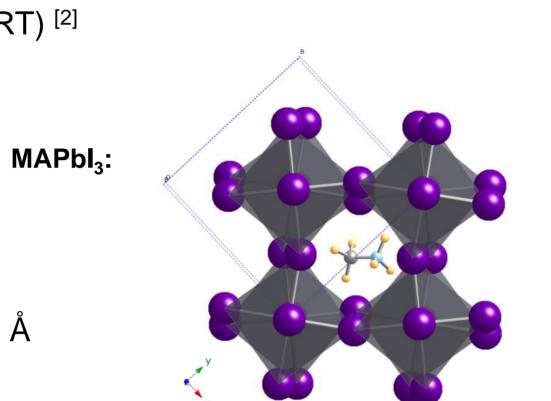
perovskite type structure

A: formamidinium [HC=(NH₂)₂+=FA+]; B:[Pb²⁺]; [X = I]

 \triangleright cubic modification (**desired** α -phase)

space group $P4/m \bar{3} 2/m$ with a = 5.931 Å (at RT)


hexagonal modification (undesired δ-phase) space group $P6_3 m c$ with a = 8.660 Å c = 7.902 Å (at RT) [2]


▶ phase transitions: $Pm\overline{3}m \stackrel{165^{\circ}C}{\longleftrightarrow} P6_3 mc \stackrel{>-123^{\circ}C}{\longleftrightarrow} P3$

MAPbl₃^[4]

tetragonal modification

space group I 4/m 2/c 2/m with a = 8.879 Å, c = 12.689 ÅA: methylammonium $[CH_3NH_3^+=MA^+]$; B: $[Pb^{2+}]$; [X=I]

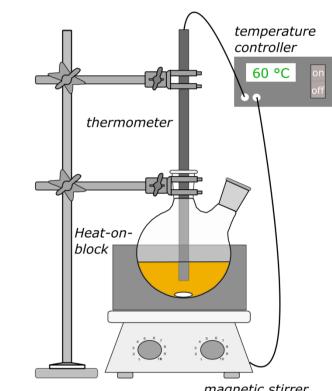
Synthesis of powder samples

 $((1-x)\cdot FAI + x\cdot MAI)_{1-y} + (CsI)_v + PbI_2 \xrightarrow{GBL, DMF,60 \, ^{\circ}C} (FA_{1-x}MA_x)_{1-v}Cs_vPbI_3$

Dissolving precursors

Homogenizing

Annealing

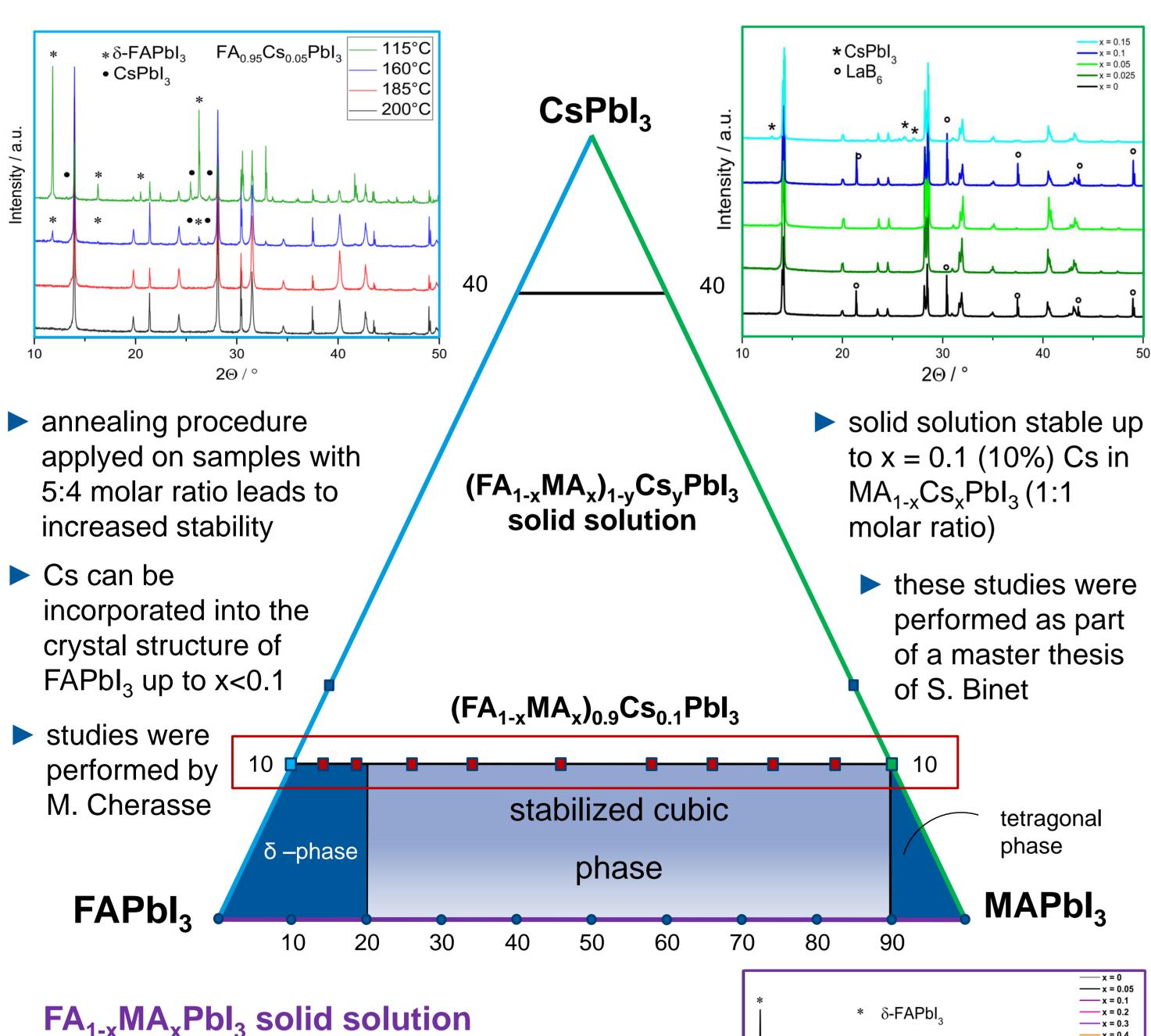

1:1 and 5:4 molar mixtures of precursors in a solvent mixture of γ-butyrolactone (GBL) and dimethylformamid (DMF)^[5]

stirring the solution at 60°C until the precursor powders were completely dissolved

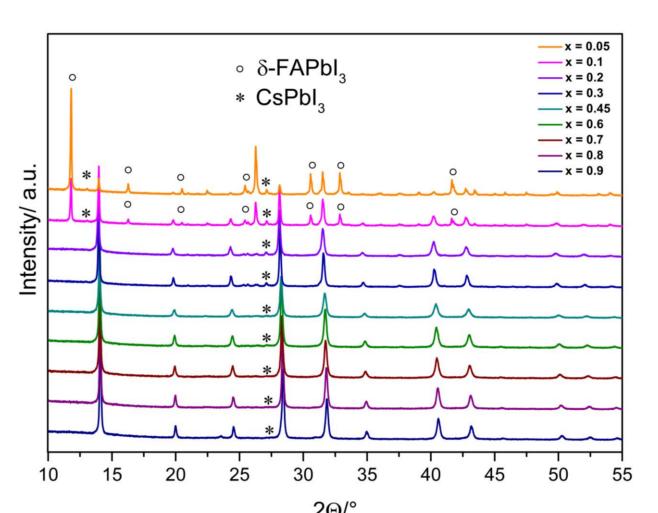
Evaporation

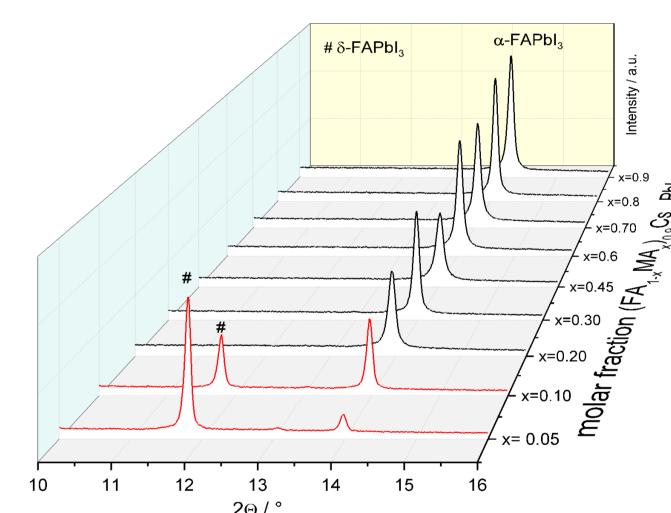
transfering the hot solution into a petri-dish and evaporation of the solvent at 100-110°C

annealing of the dry powder at selected temperatures of 115°, 165°, 185° and 200°C



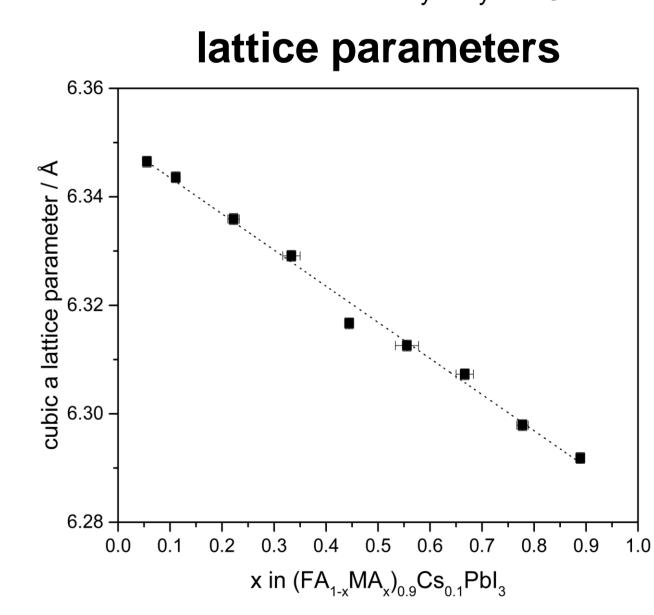
Binary compounds


FA_{1-x}Cs_xPbl₃ solid solution


MA_{1-x}Cs_xPbl₃ solid solution

Ternary phase system

$(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$ solid solution



- ▶ δ-phase of FAPbl₃ is not present in samples with x ≤ 0.2 in $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$
- ► CsPbl₃ secondary phase indicating an incomplete cesium incorporation in the crystal structure of $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$
- ► CsPbl₃ phase indicating solubility limit of cesium in $(FA_{1-x}MA_x)_{1-y}Cs_yPbl_3$: x < 0.1

long term stability

—— x = 0.7 * CsPbl₃

2 Θ / °

- long-term stability of samples proven after 6 months of storage in N₂ atmosphere (left figure)
- cubic a lattice parameter obtained from LeBail profile fitting of the XRD data of the complete $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$ series
- linear dependence of lattice parameters from composition (dotted line), following Vegard's law (right figure)

Conclusion and Outlook

with x = 0.2

Substitution of FA by MA in $FA_{1-x}MA_xPbI_3$ hinders formation of δ -phase for x = 0.2, Cs is less suitable to stabilize the cubic high temperature modification of FAPbl₃.

Bruker D8, Cu K_{α} -radiation

 $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$ solid solution shows a long-term stability of >6 months.

Linear dependence of lattice parameters from composition of $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$ revealed, proving that the solid solution follows Vegard's law.

Additional synthesis of $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pbl_3$ solid solution with variation of halides $(FA_{1-x}MA_x)_{0.9}Cs_{0.1}Pb(I,Br)_3$ for bandgap tuning.

Further studies on the effect of annealing temperatures and stoichiometry to hinder the formation of the δ -phase in $(FA_{1-x}MA_x)_{1-y}Cs_yPbI_3$ compositions.

Analysis on the influence of Cs doping on bandgap and structure.

► FA_{1-x}MA_xPbl₃ shows complete miscibility

 \triangleright δ -phase of FAPbl₃ disappears in samples

powder X-ray diffraction data obtained from