TECHNISCHE UNIVERSITÄT

a Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Chair of Inorganic Chemistry II, Dresden, DE

Motivation

Cuboctahedral clusters of type $[M_6X_{12}]^{[1]}$, occasionally filed with interstitial atoms^[2], Z, are known to differ in chemical bonding despite their uniform shape, depending on the number of available valence electrons. In our ongoing search for new topological insulators^[3] we decided to substitute three tin(II) cations for the two bismuth(III) counter ions in Bi₂[PtBi₆I₁₂]₃^[4], as we had previously done with lead(II) cations^[5]. This proved more difficult than with the lead(II) compound as the tin-deficient $(Bi_{2x}Sn_{1-3x})$ [PtBi₆I₁₂] also formed. This

compound formed finite chain units as had previously been observed in Bi₂[PtBi₆I₁₂]₃. An in- depth thermal analysis revealed a synthetic pathway that allowed the synthesis of the desired compound targeted Sn[PtBi₆I₁₂] to be achieved, wherein infinite chains could be observed, thereby giving rise to a quasi-3D material. Further investigations into the electronic structure also revealed an insight into the effect of spin-orbit-coupling (SOC) on the bandgap and its physical properties.

Thermal Analysis

- Stoichiometric amounts of Bi, Pt, Sn and Bil₃ (2:1:1:4) were prepared in an argon-filled glovebox and sealed in a silica ampoule.
- The sample was investigated via differential scanning calorimetry (DSC) by heating the sample to 800°C and cooling back down to room temperature at a rate of 2 K min⁻¹.
- Subsequent ex-situ experiments and values known from literature confirmed the individual phase transitions., wherein $(Bi_{2x}Sn_{1-x})$ [PtBi₆I₁₂] with x = 0 denotes the target phase with infinite chains.

300

θ/°C

400

Signal	ϑ _{onset} / °C	ϑ _{peak} / °C	Effect	Allocation
H1	229	232	endothermic	melting of Sn
H2	265	269	endothermic	melting of Bi
Н3	279	285/290	exothermic & endothermic	formation & of Bi_4I_4
H4	303	309–330	exothermic	formation of $_{3x}$)[PtBi ₆ I ₁₂] 0 : then x = 0
H5	337	354	endothermic	partial decom 0
H6	369	374/381	exothermic	formation of
H7	413	443/447	endothermic	decomposition then <i>x</i> = 0

Signal	ϑ _{onset} / °C	ϑ _{peak} / °C	Effect	Allocation
C1	427	422	exothermic	solidification
C2	355	352	exothermic	formation of ($_{3x}$)[PtBi ₆ I ₁₂] with
С3	327	321	exothermic	transformatio
C4	307	305	exothermic	partial re-tran $x \approx 0.3$
С5	286	280	exothermic	crystallization
C6	268	266	exothermic	solidification

Mitglied im Netzwerk von:

100

200

References:

[1] a) H. Schäfer, H. C. Schnering. Angew. Chem. **1964**, 76, 833; b) A. Simon, Angew. Chem. **1988**, 100, 163; Angew. Chem. Int. Ed. Engl. 1988, 27, 159; c) J. D. Corbett, Pure Appl. Chem. 1992, 64, 10. [2] a) R. P. Ziebarth, J. D. Corbett, J. Am. Chem. Soc. **1985**, 107, 15; b) R.P. Ziebarth, J. D. Corbett, Acc. Chem. *Res.* **1989**, 22; c) R. P. Ziebarth, J. D. Corbett, *J. Am. Chem. Soc.* **1989**, 111, 3272; d) F. Rogel, J. Zhang, M. W. Payne, J. D. Corbett, Adv. Chem. Ser. **1990**, 226.

Finite and Infinite Chains of Heavy-Atom Clusters

M.Chem. Maria A. Herz^{a,b}, Dr. Kati Finzel^a, Prof. Dr. Michael Ruck^{a,b,c}

[3] a) M. Z. Hasan, C. L. Kane, Rev. Mod. Phy. 2010, 82, 3045; b) Y. Ando, J. Phys. Soc. Jpn. 2013, 82. [4] A. Günther, F. Steden, M. Ruck, Z. anorg. allg. Chem. 2008, 634: 423-430. [5] M.A. Herz, M. Knies, K. Finzel, M. Ruck, Z. anorg. allg. Chem. 2020, 647: 53-58. [6] K. Finzel, *Lett. Math. Phys.* **2022**, 122, 4.

Financial acknowledgements:

The Graduate Academy at Technische Universität Dresden is acknowledged for funding K. F. in terms of a habilitation fellowship. We acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 390858490).

